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A new numerical scheme for computing the evolution of water waves with a mod-
erate curvature of the free surface, modeled by the dispersive shallow water equations,
is described. The discretization of this system of equations is faced with two kinds
of numerical difficulties: the nonsymmetric character of the (nonlinear) advection–
propagation operator and the presence of third order mixed derivatives accounting for
the dispersion phenomenon. In this paper it is shown that the Taylor–Galerkin finite
element method can be used to discretize the problem, ensuring second order accu-
racy both in time and space and guaranteeing at the same time unconditional stability.
The properties of the scheme are investigated by performing a numerical stability
analysis of a linearized model of the scalar 1D regularized long wave equation. The
proposed scheme extends straightforwardly to the fully nonlinear 2D system, which
is solved here for the first time on arbitrary unstructured meshes. The results of the
numerical simulation of a solitary wave overpassing a vertical circular cylinder are
presented and discussed in a physical perspective.c© 1998 Academic Press

Key Words:shallow water equations; nonlinear dispersive waves; Taylor–Galerkin
method; finite elements.

1. INTRODUCTION

Since the celebrated Scott Russel’s discovery in 1834 of the existence of solitary waves,
a deeper and deeper mathematical understanding of the dynamics of nonlinear dispersive
waves has been attained (for a historical overview see [1, 2]). Restricting the attention to
systems of equations that admit two-way travelling waves, several dispersive shallow water
equations have been proposed in the literature to describe the dynamics of finite amplitude
dispersive water waves (see, for instance, [3–6]).

Dispersive shallow water systems (sometimes also referred to as Boussinesq-type sys-
tems) can be deduced by means of an asymptotic expansion technique, starting from the
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potential equation for irrotational motion and from appropriate boundary conditions at
the free surface of the water. This derivation is based on two assumptions: fairly long
waves and small elevation of the free surface with respect to depth [4, 7]. If the verti-
cally averaged velocity is the unknown, the dispersive shallow water system so deduced
differs from the nondispersive model by the occurrence of a third order mixed derivative
term in the momentum equation. This term accounts for the dispersion, i.e., the propaga-
tion at different phase speeds of wave components of different wavelength and amplitude
[8].

The numerical approximation of the dispersive shallow water equations can be useful
for studying several physical problems and also in many engineering applications, where
moderately long waves occur. Although the dispersive shallow water equations constitute
an approximation of a higher order with respect to the nonlinear long-wave model, their
numerical discretization demands for due care. In fact, owing to the different mathematical
nature of the equations and the peculiar physical range in which they are used, one cannot
rely upon the mere transposition of schemes which have been demonstrated to be successful
for the shallow water equations (see, for instance, [9, 10]). Roughly speaking, dispersion is
expected to require that a great spatial accuracy and inertia term typically play a relevant
role which calls for an appropriate account of the direction of propagation of the physical
disturbance.

While the approximation of the dispersive shallow water equations by finite differences
is currently used by several researchers [11], the approximation by finite elements is still
for the most part unexplored. Among the few examples, we can mention that some authors
have adopted a sort of predictor–corrector scheme [12, 13], borrowed from the finite dif-
ference framework. The use of a Crank–Nicolson scheme for the temporal discretizations
has been exploited by Goringet al.[14]. Katopodes and Wu have obtained excellent results
adopting a Lax–Wendroff time discretization of the whole system of equations [15]. To the
authors’ knowledge, there is no example of 2D simulation of nonlinear dispersive waves on
unstructured grids.

The aim of the present paper is to investigate the application of the Taylor–Galerkin
(TG) method to the dispersive shallow water equations. The Taylor–Galerkin method was
proposed by Donea to solve transient convection problems [16]. The attractive numerical
properties of this method have been investigated in a few studies [17–19] which demonstrate
the high phase-speed accuracy of the method as well as its selective dissipation at high spatial
frequencies, ensuring almost oscillation-free solutions.

These properties, which are well known in the discretization of conservation laws with
smooth solutions, suggest the adoption of the Taylor–Galerkin method for simulating the
propagation of dispersive waves, where accuracy in space and time is a very crucial is-
sue. In this paper a new scheme of Taylor–Galerkin type suitable for dispersive wave is
proposed. The presence of a dispersive operator in the equations governing this kind of
flow implies a twofold modification with respect to the classical Taylor–Galerkin scheme:
(i) new unknowns (the time derivative of the original unknowns) have to be introduced and
(ii) a parameter has to be introduced in the construction of the scheme, which provides
a kind of supplementary degree of freedom allowing the scheme to attain unconditional
stability.

A remarkable property of the present approach is that accurate results can be obtained
by using a very simple basis of linear finite elements. The possibility of using the com-
pact computational molecule characteristic of the Galerkin method with linear elements is
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obtained at the price of doubling the number of unknowns, but is particularly attractive in
2D computations over geometrical regions of arbitrary shape and complexity.

The content of the paper is organized as follows. In Section 2 we introduce the nonlinear
system of dispersive shallow water equations both in two dimensions and in one dimension.
The temporal and spatial discretizations of the one-dimensional equations according to
the Taylor–Galerkin methodology are described in Section 3. The resulting TG scheme
was already anticipated in [20] in the context of the dispersive shallow water system. The
analysis of the numerical stability of the TG scheme applied to a suitable linearized model
of the equation system is presented in Section 4. In Section 5 the method is extended to two-
dimensional equations, providing also a detailed discussion of the treatment of the boundary
conditions. In Section 6, three computational examples in one dimension are considered,
while Section 7 contains the results of a 2D simulation of a solitary wave overpassing a
circular cylinder, using an unstructured triangular mesh with linear interpolation of all the
unknowns. The final section is devoted to some concluding remarks.

2. THE DISPERSIVE SHALLOW WATER EQUATIONS

The dispersive shallow water equations for free surface flow read [4]

∂h

∂t
+ ∇ · (hv) = 0, (2.1)

∂v
∂t

− H

2

∂

∂t
∇(∇ · (Hv)) + H2

6

∂

∂t
∇(∇ · v) + (v · ∇)v + g∇ξ = 0. (2.2)

Herev(x, y, t) is the vertically averaged fluid velocity,−H(x, y) is the depth under a refer-
ence plane,ξ(x, y, t) is the elevation over the same reference plane,h(x, y, t) = ξ(x, y, t) +
H(x, y), andg is the gravity field. By using the long-wave zero order approximation

∂ξ

∂t
= −∇ · (Hv),

∂v
∂t

= −g∇ξ, (2.3)

the dispersive shallow water equations can be rewritten in several forms that differ for the
higher order differential terms appearing in (2.2) [7]. However, the form shown in (2.1)–
(2.2) is the most convenient from the numerical point of view, as discussed in [21], and we
refer to it in the present work.

When considering a one-dimensional case, the system of differential equations (2.1)–
(2.2) can be formally rewritten as

∂

∂t

(
h

v − H
2

∂2(Hv)

∂x2 + H2

6
∂2v
∂x2

)
+

(
v h
g v

)
∂

∂x

(
h
v

)
=

(
0

gd H
dx

)
. (2.4)

This system can be recast in a compact vector notation either in the conservation-law form

∂

∂t
(1 − L)u + ∂f(u)

∂x
= s, (2.5)

or in the quasilinear form

∂

∂t
(1 − L)u + A(u)

∂u
∂x

= s, (2.6)
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where

u = (h, v)T , f(u) =
(

hv,
v2

2
+ gh

)T

, A(u) =
(

v h
g v

)
,

(2.7)

Lu =
(

0,
H

2

∂2(Hv)

∂x2
− H2

6

∂2v

∂x2

)T

, s(x) =
(

0, g
d H

dx

)T

.

Notice thatL is a spatial linear operator so that it commutes with∂/∂t .
If the bottom is flat, i.e., ifH = H

¯
= constant, the source term cancels and the operator

L simplifies to

L
¯
u =

(
0,

H
¯

2

3

∂2v

∂x2

)T

. (2.8)

3. NUMERICAL SCHEME

The numerical integration of the dispersive shallow water equations requires an appro-
priate, i.e., directionally biased, treatment of the propagation–advection term and, at the
same time, an accurate representation of the dispersive term in the equations. To cope with
these two needs, the Taylor–Galerkin method [16], developed originally for the accurate
solution of transient advection problems, lends itself as the most promising candidate. In
fact, the fundamental aspect of the Taylor–Galerkin method is the proper matching of the
time and space discretization processes for advection equations or hyperbolic systems: the
discretization in time is performed before the spatial approximation by means of a Taylor
series expansion in the time step, as in the classical Lax–Wendroff FD scheme [22], but
the series is extended to a higher order than the second to exploit the superior approxi-
mation properties of a spatial discretization by linear finite elements [17]. In this way, a
method is obtained which embodies elements of the theory of characteristics (in 1D as
well as in 2D or 3D) while still retaining the compact computational molecule typical
of any Galerkin finite element approximation. Notice that the issue here is not that of
simply introducing a time discretization of a higher order, but that of obtaining a time
discrete version of the PDE which embodies its high-order differential information at the
(semi)continuous level, very similarly to the classical Obrechkoff methods for solving ODE
problems.

3.1. Temporal Discretization

Let us perform an expansion of the quantityun+1 in a Taylor series of1t around time
t = tn; up to the third order we get

un+1 = un + 1tun
t + (1t)2

2
un

tt + (1t)3

6
un

ttt + O((1t)4), (3.1)

whereun
t is the time derivative ofu evaluated att = tn and so on. The third order derivative

can be expressed also as

un
ttt = θ

1t

(
un+1

t t − un
tt

) + O(εθ ), (3.2)
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where

εθ =
{

1t for θ = 1,

1 for θ 6= 1.
(3.3)

By substituting the expression (3.2) into the last term of the right-hand side of equation
(3.1), we get

un+1 − θ
(1t)2

6
un+1

t t = un + 1tun
t + (3 − θ)

(1t)2

6
un

tt + O
(
(1t)3εθ

)
. (3.4)

Forθ = 1, the expression (3.4) is third order accurate as (3.1) and coincides with the classical
form used as starting step for the derivation of the Taylor–Galerkin scheme [16]. For other
values ofθ , the expression (3.4) is only second order accurate.

Applying the linear operator(1 − L) to Eq. (3.4), we get

(1− L)un+1−θ
(1t)2

6
(1− L)un+1

t t = (1− L)un +1t (1− L)un
t + (3−θ)

(1t)2

6
(1− L)un

tt .

(3.5)

We now follow the Lax–Wendroff idea, originally pursued in a first-order hyperbolic con-
text, and substitute the exact equation (2.5) and its time derivative in the Taylor series.
Equation (2.5) reads

∂

∂t
(1 − L)u = (1 − L)

∂u
∂t

= −∂f(u)

∂x
+ s, (3.6)

so that

∂2

∂t2
(1 − L)u = ∂

∂t

(
(1 − L)

∂u
∂t

)
= ∂

∂t

(
−∂f(u)

∂x
+ s(x)

)
= − ∂

∂t

∂f(u)

∂x
. (3.7)

It is now possible to substitute the forms (3.6) and (3.7) into Eq. (3.5), thus getting

(1 − L)un+1 + θ
(1t)2

6

∂

∂t

∂f(un+1)

∂x
= (1 − L)un − 1t

∂f(un)

∂x

− (3 − θ)
(1t)2

6

∂

∂t

∂f(un)

∂x
+ 1ts. (3.8)

Writing the derivative of the fluxf in quasilinear form, it is possible to rewrite Eq. (3.8) as

(1 − L)un+1 + θ
(1t)2

6

∂

∂x

(
An+1∂un+1

∂t

)
= (1 − L)un − 1t

∂f(un)

∂x

− (3 − θ)
(1t)2

6

∂

∂x

(
An ∂un

∂t

)
+ 1ts, (3.9)

where An = A(un), etc. At this stage, a difficulty, which is typical of these dispersive
equations, is encountered: because of the presence of the operatorL, the terms with the
temporal derivatives appearing in (3.9) cannot be expressed in a straightforward manner in
terms of purely spatial derivatives. To make the temporal derivatives disappear in Eq. (3.9),
it is then necessary to introduce the new auxiliary variablew, defined as

w ≡ ∂u
∂t

= (1 − L)−1

(
−∂f(u)

∂x
+ s

)
. (3.10)
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Consequently, Eq. (3.9) is equivalent to the system of equations

(1 − L)wn+1 + df(un+1)

dx
= s, (3.11)

(1 − L)un+1 + θ
(1t)2

6

d

dx
(An+1wn+1) = (1 − L)un − 1t

df(un)

dx

− (3 − θ)
(1t)2

6

d

dx
(Anwn) + 1ts, (3.12)

in which the spatial derivative has been indicated as an ordinary derivative since the equa-
tions represent a time-discretized version of the original partial differential problem. The
discretization is second order accurate (third order only forθ = 1) without requiring the use
of an intermediate step (two-level scheme). The two (vector) equations of the system are
nonlinear and are coupled together.

3.2. Spatial Discretization

We now consider the weak form of Eqs. (3.11)–(3.12) provided by the standard Galerkin
finite element [23]. The computational domain [x1, x2] is partitioned in equispaced intervals
and we define the set of the linear functions{ψi } to be the finite element basis with value 1 in
thei th node and zero out of the surrounding elements. Then the weak form of Eqs. (3.11)–
(3.12) reads

〈
ψi , (1 − L)wn+1

〉 +
〈

ψi ,
df(un+1)

dx

〉
= 〈ψi , s〉, (3.13)

〈
ψi , (1− L)un+1

〉 − θψ ′
i ,

(1t)2

6
〈An+1wn+1〉 = 〈

ψi , (1− L)un
〉 − 1t

〈
ψi ,

df(un)

dx

〉
+ (3− θ)

(1t)2

6

〈
ψ ′

i , Anwn
〉 + 1t〈ψi , s〉,

(3.14)

where〈·, ·〉 indicates the usualL2 product. Some terms in Eqs. (3.13)–(3.14) have been
integrated by parts; this operation yields to boundary integrals, which vanish in the present
context because of the boundary conditions (see the discussion about this issue at the end
of Section 5).

To solve Eqs. (3.13)–(3.14) numerically, they have to be linearized. We can adopt, for
instance, the most simple linearization

An+1wn+1 ' Anwn+1 (3.15)

and similarly in the implicit term involving the flux

df(un+1)

dx
' Anun+1

x . (3.16)

The resulting linearized system is

〈
ψi , (1 − L)wn+1

〉 +
〈

ψi , An dun+1

dx

〉
= 〈ψi , s〉, (3.17)
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〈
ψi , (1 − L)un+1

〉 − θ
(1t)2

6

〈
ψ ′

i , Anwn+1
〉 = 〈

ψi , (1 − L)un
〉 − 1t

〈
ψi ,

df(un)

dx

〉
+ (3 − θ)

(1t)2

6

〈
ψ ′

i , Anwn
〉 + 1t〈ψi , s〉.

(3.18)

Projecting the solutionun+1 on the space of theψi , we get

un+1(x) =
∑

j

ψ j (x)un+1
j , wn+1(x) =

∑
j

ψ j (x)wn+1
j , (3.19)

and, asA(u) depends linearly onu, we can define

un+1
j = (

hn+1
j , vn+1

j

)
, An+1

j =
(

vn+1
j hn+1

j

g vn+1
j

)
. (3.20)

Equations (3.17)–(3.18) can then be rewritten as

∑
j

〈ψi , (1 − L)ψ j 〉wn+1
j +

∑
k, j

〈ψi , ψkψ
′
j 〉An

kun+1
j = 〈ψi , s〉, (3.21)

∑
j

〈ψi , (1 − L)ψ j 〉un+1
j − θ

(1t)2

6

∑
k, j

〈ψ ′
i , ψkψ j 〉An

kwn+1
j

=
∑

j

〈ψi , (1 − L)ψ j 〉un
j − 1t

∑
k, j

〈ψi , ψkψ
′
j 〉An

kun
j

+ (3 − θ)
(1t)2

6

∑
k, j

〈ψ ′
i , ψkψ j 〉An

kwn
j + 1t〈ψi , s〉. (3.22)

These equations constitute a linear system in the unknowns(wn+1
j , un+1

j ), the dependence
of An

j onun
j being explicitly given in (3.20).

The terms involving the operatorL are evaluated using the usual integration by parts:

〈ψi , (1 − L)ψ j 〉 = 〈ψi , ψ j 〉 − 〈Lψi , ψ j 〉

= 〈ψi , ψ j 〉 + 1

2

〈
d

dx
(Hψi ),

d

dx
(Hψ j )

〉
− 1

6

〈
d

dx
(H2ψi ),

dψ j

dx

〉
+ boundary terms. (3.23)

It may be noticed that the operatorL is symmetric only forH = H
¯

= constant.

Remarks on the discrete equation system.Equations (3.21)–(3.22) constitute a linear
system to be solved for determining the solutionun+1. The linear system comprises the
vector unknowns(wn+1

j , un+1
j ), each with two scalar components. IfN is the number of

nodes, the order of the linear system is therefore 4N. In general, the matrix is nonsymmetric
and block-tridiagonal, with 4× 4 blocks.

It is interesting to consider the simpler form assumed by the system (3.21)–(3.22) when a
scheme of lower time accuracy is considered or when the “dispersion operator”L is absent.
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For θ = 0 or, equivalently, if the Taylor series (3.1) is limited to the second order term,
the final linear system to be solved can be written as

∑
j

〈ψi , (1 − L)ψ j 〉wn+1
j = −

∑
k, j

〈ψi , ψkψ
′
j 〉An

kun+1
j + 〈ψi , s〉, (3.24)

∑
j

〈ψi , (1 − L)ψ j 〉un+1
j =

∑
j

〈ψi , (1 − L)ψ j 〉un
j − 1t

∑
k, j

〈ψi , ψkψ
′
j 〉An

kun
j

+ (1t)2

2

∑
k, j

〈ψ ′
i , ψkψ j 〉An

kwn
j + 1t〈ψi , s〉. (3.25)

In fact, one can solve forun+1
j from the second equation before solving the first one for

wn+1
j , which can be addressed in a subsequent step. Furthermore, due to the form of the

operatorL, each of these subsystems uncouples in two systems ofN unknowns for the
two scalar components of the vectors unknowns. Therefore, in this case the 4× 4 block-
tridiagonal system uncouples into four scalar tridiagonal systems ofN equations. In the
particular case of a flat bottom, the scalar tridiagonal systems are symmetric, thanks to the
symmetry of operatorL. This is the Lax–Wendroff type scheme proposed by Katopodes and
Wu [15].

If L = 0 (shallow water equations), Eq. (3.10) is trivial and the expression ofw can be
directly substituted in Eq. (3.11). The order of the block-tridiagonal system is now 2N. In
particular, forθ = 1 this method is nothing but the Taylor–Galerkin scheme applied to a
hyperbolic system.

4. LINEAR STABILITY ANALYSIS

To analyze the numerical stability of the scheme (3.21)–(3.22), it is useful, for the sake of
simplicity, to consider the regularized long wave equation [24]. This equation is the linear
scalar counterpart of the dispersive shallow water system and describes the propagation of
waves traveling in one direction only, on a flat bottom [8]:

∂u

∂t
+

(
3

2
u +

√
gH

)
∂u

∂x
− H2

3

∂

∂t

∂2u

∂x2
= 0. (4.1)

To assess the stability properties of the new TG scheme, at least in the linear regime, we
introduce the linearized version of Eq. (4.1), which reads

∂u

∂t
+ a

∂u

∂x
− b

∂

∂t

∂2u

∂x2
= 0, (4.2)

wherea andb are positive constants. Considering linear interpolation functions on a (peri-
odic) uniform grid ofN equal linear elements, the discrete equations (3.21)–(3.22) can be
recast in the well-known finite difference format (see, for instance, [25]), and the Taylor–
Galerkin scheme (3.18)–(3.19) applied to Eq. (4.2) assumes the form

1

6

(
wn+1

j −1 + 4wn+1
j + wn+1

j +1

) − b

(1x)2

(
wn+1

j −1 − 2wn+1
j + wn+1

j +1

) + a

21x

(
un+1

j +1 − un+1
j −1

) = 0,

(4.3)
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1

6

(
un+1

j −1 + 4un+1
j + un+1

j +1

) − b

(1x)2

(
un+1

j −1 − 2un+1
j + un+1

j +1

) + aθ
(1t)2

12

(
wn+1

j +1 − wn+1
j −1

)
= 1

6

(
un

j −1 + 4un
j + un

j +1

) − b

(1x)2

(
un

j −1 − 2un
j + un

j +1

) − a
1t

21x

(
un

j +1 − un
j −1

)
− (3 − θ)

(1t)2

12

(
wn

j +1 − wn
j −1

)
. (4.4)

We now consider the error of the scheme, defined as the difference between the exact and
the computed solution. Denoting byηn

j , ε
n
j the round-off error forwn

j , un
j , respectively, these

quantities can be expanded in a Fourier series as

ηn
j =

∑
φ

ηn
φ ei j φ, εn

j =
∑

φ

εn
φ ei j φ, (4.5)

whereφ = φk = kπ/N. As the truncation error satisfies the same equation of the discrete
solution, substituting the form (4.5) into Eqs. (4.3)–(4.4) and carrying out some elementary
algebra, the error components are found to satisfy the system[

1

3
(2 + cosφ) + 2b

(1x)2
(1 − cosφ)

]
ηn+1

φ + i
a

1x
sinφ εn+1

φ = 0, (4.6)

[
1

3
(2 + cosφ) + 2b

(1x)2
(1 − cosφ)

]
εn+1
φ + i θ

a(1t)2

61x
sinφ ηn+1

φ

=
[

1

3
(2 + cosφ) + 2b

(1x)2
(1 − cosφ)

]
εn
φ − i

a1t

1x
sinφ εn

φ − i (3 − θ)
a(1t)2

61x
sinφ ηn

φ

(4.7)

To simplify the analysis, it is convenient to introduce the quantities

α = a
1t

1x
sinφ and β = 1

3
(2 + cosφ) + 2b

(1x)2
(1 − cosφ), (4.8)

where it can be noted thatβ > 0 for anyφ. Then, Eqs. (4.6)–(4.7) may be rewritten as

βηn+1
φ + i α

1t
εn+1
φ = 0, (4.9)

βεn+1
φ + i θ

α1t

6
ηn+1

φ = (β − i α) εn
φ − i (3 − θ)

α1t

6
ηn

φ. (4.10)

Substituting the former expression into the latter, we find(
β + θ

α2

6β

)
εn+1
φ =

[
β − i α − (3 − θ)

α2

6β

]
εn
φ, (4.11)

or

εn+1
φ

εn
φ

= 6β2 − i 6αβ − (3 − θ)α2

6β2 + θα2
. (4.12)
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The numerical stability of the scheme is controlled by the magnitude of the amplification
factor above and it is guaranteed provided that∣∣∣∣∣εn+1

φ

εn
φ

∣∣∣∣∣
2

= [6β2 − (3 − θ)α2]2 + 36α2β2

(6β2 + θα2)2
≤ 1. (4.13)

It is very simple to show that such a condition is verified, for any values ofα andβ, provided
that

θ ≥ 3

2
. (4.14)

Therefore, forθ satisfying this unequality the proposed scheme is unconditionally stable.
Note that the marginal valueθ = 3

2 yields to a zero dissipative scheme. On the contrary,
for θ = 1

2, that is, for the standard Taylor–Galerkin coefficients of the second order terms,
the scheme is always unstable. This is due to the modification of the scheme caused by the
introduction of the unknownw.

Absence of numerical diffusivity is a very important feature for the discretization of
nonlinear dispersive equations that typically admit as a solution waves traveling without
distortion. The permanent shape of these solutions can be assured only by the exact balancing
of convection and dispersion. This property has to be accurately preserved by the numerical
scheme and requires avoiding introducing spurious numerical diffusion.

5. EXTENSION TO THE TWO-DIMENSIONAL SYSTEM

In this section the numerical scheme (3.18)–(3.19) derived in Section 3 is extended to
the two-dimensional equations. For the sake of simplicity, we restrict our attention to the
equations modeling the flow on a horizontal bottomH = H

¯
= constant. In this case the

dispersive shallow water equations read

ξt + ∇ · (hv) = 0, (5.1)

vt − H
¯

2

3
∇(∇ · vt ) + (v · ∇)v + g∇ξ = 0. (5.2)

Analogously to the 1D case, the momentum equation can be rewritten in a more compact
form by introducing the multidimensional spatial differential operatorL

¯
,

L
¯
v = H

¯
2

3
∇(∇ · v), (5.3)

so that Eq. (5.2) simplifies to

(1 − L
¯
)vt + (v · ∇)v + g∇ξ = 0. (5.4)

It can be noted that in two dimensions the equations cannot be written in a conservative
form similar to (2.5). We then introduce auxiliary unknowns which are the time derivatives
of the basic unknowns, namely,

ζ ≡ ξt = −∇ · (hv), (5.5)

ν ≡ vt = (1 − L
¯
)−1[−(v · ∇)v − g∇ξ ]. (5.6)
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In analogy with the 1D case, to derive the numerical scheme a Taylor expansion in1t
up to third order has to be performed for bothξ andv:

ξn+1 = ξn + 1tξn
t + (1t)2

2
ξn

tt + (1t)3

6
ξn

ttt , (5.7)

vn+1 = vn + 1tvn
t + (1t)2

2
vn

tt + (1t)3

6
vn

ttt . (5.8)

We observe that the third order derivative can be rewritten as

ξn
ttt = θ

1t

(
ξn+1

t t − ξn
tt

) + O(εθ ), (5.9)

vn
ttt = θ

1t

(
vn+1

t t − vn
tt

) + O(εθ ), (5.10)

whereεθ is defined as in (3.3). Equations (5.9)–(5.10) allow us to rewrite (5.7)–(5.8) as

ξn+1 − θ
(1t)2

6
ξn+1

t t = ξn + 1tξn
t + (3 − θ)

(1t)2

6
ξn

tt , (5.11)

vn+1 − θ
(1t)2

6
vn+1

t t = vn + 1tvn
t + (3 − θ)

(1t)2

6
vn

tt . (5.12)

The original Eqs. (5.1)–(5.4) can then be substituted into (5.11)–(5.12), yielding

ξn+1 +θ
(1t2)

6
∇ · (hn+1vn+1)t = ξn −1t∇ · (hnvn)− (3−θ)

(1t)2

6
∇ · (hnvn)t , (5.13)

(1 − L
¯
)vn+1 + θ

(1t)2

6
[(vn+1 · ∇)vn+1 + g∇ξn+1]t

= (1 − L
¯
)vn − 1t [(vn · ∇)vn + g∇ξn] − (3 − θ)

(1t)2

6
[(vn · ∇)vn + g∇ξn]t .

(5.14)

Then, using the definitions (5.5)–(5.6), the following discretization in time is obtained:

ζ n+1 + ∇ · (hn+1vn+1) = 0, (5.15)

(1 − L
¯
)νn+1 + (vn+1 · ∇)vn+1 + g∇ξn+1 = 0, (5.16)

ξn+1 + θ
(1t)2

6
∇ · (ζ n+1vn+1 + hn+1νn+1)

= ξn − 1t∇ · (hnvn) − (3 − θ)
(1t)2

6
∇ · (ζ nvn + hnνn), (5.17)

(1 − L
¯
)vn+1 + θ

(1t)2

6
[(νn+1 · ∇)vn+1 + (vn+1 · ∇)νn+1 + g∇ζ n+1]

= (1 − L
¯
)vn − 1t [(vn · ∇)vn + g∇ξn]

− (3 − θ)
(1t)2

6
[(νn · ∇)vn + (vn · ∇)νn + g∇ζ n]. (5.18)

We linearize the equations above as

ζ n+1 + hn∇ · vn+1 + vn · ∇hn+1 = 0, (5.19)

(1 − L
¯
)νn+1 + (vn · ∇)vn+1 + g∇ξn+1 = 0, (5.20)
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ξn+1 + θ
(1t)2

6
(ζ n∇ · vn+1 + vn · ∇ζ n+1 + hn∇ · νn+1 + νn · ∇hn+1)

= ξn − 1t∇ · (hnvn) − (3 − θ)
(1t)2

6
∇ · (ζ nvn + hnνn), (5.21)

(1 − L
¯
)vn+1 + θ

(1t)2

6
[(νn · ∇)vn+1 + (vn · ∇)νn+1 + g∇ζ n+1]

= (1 − L
¯
)vn − 1t [(vn · ∇)vn + g∇ξn] − (3 − θ)

(1t)2

6
[(νn · ∇)vn

+ (vn · ∇)νn + g∇ζ n]. (5.22)

The weak form of the equations is then obtained by means of the standard Galerkin method,
integrating by parts, as usual, all the second order spatial derivatives. The finite element
discretization of Eqs. (5.19)–(5.22) is finally accomplished using linear triangular finite ele-
ments. The procedure is fully analogous to the 1D case (except for the boundary conditions
that are discussed below) and is not repeated here. The linear system to be solved in the fully
discrete case involves 6N unknowns,N being the number of nodes of the computational
mesh.

Boundary conditions. At inflow and outflow, the number of boundary conditions to be
prescribed for(v, ξ) is dictated by the characteristic theory. We have adopted

v · t = 0, ξ = 0 at inflow, (5.23)

ξ = 0 at outflow, (5.24)

wheret is the unit vector tangential to the boundary. At the wall, the free slip boundary
condition has to be prescribed for an inviscid fluid,

v · n = 0 at the wall, (5.25)

wheren is the unit vector normal to the boundary. Moreover, boundary conditions on the
auxiliary unknowns have to be prescribed. Applying the Green formula to the third order
mixed derivative term of Eq. (5.2) one gets

〈8,∇(∇ · vt )〉 = −〈∇ · 8,∇ · vt 〉 +
∫

0

(8 · n)(∇ · vt ) d0. (5.26)

Therefore, the natural boundary conditions to be applied for the auxiliary unknownν ≡ v
(on the portion of the boundary where the normal component ofv is not prescribed) is

∇ · vt = 0, on all the boundary. (5.27)

6. NUMERICAL EXAMPLES IN ONE DIMENSION

For discussing and comparing the numerical results, in this section it turns out to be
useful to rewrite the equations in terms of dimensionless variables, defined by

ū = u√
gH

¯

, h̄ = h

H
¯

, x̄ = x

H
¯

, t̄ =
(

g

H
¯

)1/2

t. (6.1)
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Using only dimensionless variables from now on, the bar can be omitted and Eqs. (5.1)–
(5.2) in dimensionless form read

ξt + ∇ · (hv) = 0, (6.2)

vt − 1
3∇(∇ · vt ) + (v · ∇)v + ∇ξ = 0. (6.3)

6.1. Traveling Solitary Wave

Nonlinear dispersive systems are characterized by the fact that they admit solutions
which are waves traveling without distortion, the effect of nonlinearity being balanced
exactly by that of dispersion. Exact solutions of this kind exist for the dispersive shallow
water equations (6.2)–(6.3), too.

For small elevation of the water with respect to the depth, it may be seen that, neglecting
higher order terms, the well-known solitary wave with a sech-profile (due to Boussinesq
himself) is a solution of the system (6.2)–(6.3); see [8]. The sech-profile has been used by a
number of authors as an approximate initial condition for the numerical approximation of the
dispersive shallow water equations [4, 12, 13, 26, 27]. However, when testing a numerical
scheme, it is preferable to deal with exact solutions of the differential problem, to be able
to determine the exact numerical error. For this purpose, the knowledge ofexactsolutions
of the dispersive shallow water equations which have a permanent shape is necessary. This
issue has been addressed in [28], where it is shown that the search for a permanent shape
wave solution of the dispersive shallow water equations (6.2)–(6.3) leads, for any height
of the wave, to solve an ordinary differential equation. A closed form for the propagation
speed of a solitary wave is given, allowing an exact evaluation of possible numerical phase
shifts induced by a numerical scheme. The derivation of a solution of this kind obtained in
[28] is sketched in the Appendix for completeness of the exposition. The numerical solution
of the ODE (A.1) is used in this section as the initial condition to check how accurately
the TG method computes the propagation of a solitary wave. The computational mesh is
intentionally rather coarse to illustrate better the performance of the scheme.

We first consider the case of a maximum elevationξ0 = 0.2 which corresponds toζ0 = 0.2
of the Appendix. The wave is initially centered inx = 20 and travels up tot = 60. The mesh
size is 0.5 and the temporal increment is 0.3.

Figure 1 shows the water elevation computed by the scheme (3.18)-(3.19) withθ = 3
2 at

various instants of time. The results can be compared with those obtained by a standard
Crank–Nicolson scheme (Fig. 2). The Taylor–Galerkin scheme is found be very accurate,
neither showing variations in the maximum elevation of the wave nor producing an erroneous
wake. The solution travels with the correct celerity (A.2) and does not suffer from the phase-
lag error characteristic of other numerical schemes [29].

Figure 3 shows the computed solution in a test analogous to the previous one, but with
ξ0 = 0.7 This elevation falls outside of the range of applicability of the dispersive shallow
water equations, since it contradicts the assumptions under which they have been derived.
However, such a computation is useful to verify the robustness of the new numerical scheme.
For this computation a time step1t = 0.157 has been used. By using a finer and finer mesh,
a perfect superposition of the computed and the exact solution is achieved.

6.2. Solitary Wave on a Beach

Here we address the simulation of a wave moving on a sloping beach, under the same
conditions proposed by Peregrine [4]. The slope of the beach is1

30; the initial conditions
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FIG. 1. Solitary wave propagation,ξ0 = 0.2, Taylor–Galerkin scheme.

correspond to the ones of a solitary wave on flat bottom, centered atx = 30. The initial
elevation of the wave is 0.1 and 0.2.

A time step1t = 0.21 has been used and a spatial mesh size1x = 0.33 has been assumed.
Figures 4 and 5 show the elevation profile at equally spaced intervals of time. The last sketch
of Fig. 4 refers tot = 25.84; the last sketch of Fig. 5 refers tot = 18.6 of elapsed time. The
computation is run nearly until the ratio of elevation over depth does not overcome the
assumptions of the dispersive shallow water theory.

FIG. 2. Solitary wave propagation,ξ0 = 0.2, Crank–Nicolson scheme.
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FIG. 3. Solitary wave propagation,ξ0 = 0.7, Taylor–Galerkin scheme.

6.3. Head-on Collision of Solitary Waves

The nonlinear dispersive shallow water equations (6.2)–(6.3) allow propagation of 1D
waves in both directions of thex axis. It is then interesting to simulate numerically the
collision of two solitary waves traveling in opposite directions to check if the shape of the
waves is preserved after collision. In other words, one can check numerically if the solitary
waves solution of Eqs. (6.2)–(6.3) are solitons. We consider here two solitary waves of equal
amplitude 0.5, traveling in opposite directions. This problem is equivalent to considering
the reflection of a solitary wave from a wall and has been addressed, for instance, in [26, 30]
(the latter for a slightly different set of equations).

FIG. 4. Solitary wave on a beach,ξ0 = 0.1.
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FIG. 5. Solitary wave on a beach,ξ0 = 0.2.

A spatial increment1x = 0.1 has been used with1t = 0.05. Figure 6 shows the elevation
of the water at different times before and after the collision, with a time difference of 2.5.
The maximum value reached by water level is 1.0784, which is more than twice the incident
wave height and is slightly different from the value 1.0504 found in [26]. After the collision,
the waves continue to travel with a shape almost unchanged, but not exactly the same, as may
be seen in Fig. 7. In this plot a magnification of the vertical axis makes it visible small spatial
oscillations of the last profile represented in Fig. 6. This drawing shows a very small tail,
with maximum amplitude which is about 1/500 of the amplitude of the incident wave. Such
results are very close to the ones obtained in [26] by a completely different numerical ap-
proach, then confirming that the solitary wave solutions of Eqs. (6.2)–(6.3) are not solitons.

Conservativity of the scheme.The integrals of some scalar quantities are conserved by
Eqs. (6.2)–(6.3). In the following table the global mass and velocity at initial and final times
are compared for the computations performed in the preceding paragraphs. The traveling
wave values refer to the caseξ0 = 0.2.

FIG. 6. Collision between two solitary waves of equal amplitude 0.5.
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FIG. 7. Tail between the solitary waves after their head-on interaction.

Test 1t 1x Initial mass Final mass % error

Traveling wave 0.15 0.5 1.04466 1.04640 1.6 × 10−3

Traveling wave 0.3 0.5 1.04466 1.04381 8.1× 10−4

Traveling wave 0.15 0.25 1.04466 1.04437 2.7 × 10−4

Traveling wave 0.3 0.25 1.04466 1.04477 1.1 × 10−4

Colliding waves 0.05 0.1 3.34177 3.34229 1.5 × 10−4

Test 1t 1x Initial velocity Final velocity % error

Traveling wave 0.15 0.5 1.01193 1.00712 4.7 × 10−3

Traveling wave 0.3 0.5 1.01193 1.01057 1.3 × 10−3

Traveling wave 0.15 0.25 1.01193 1.00999 1.9 × 10−3

Traveling wave 0.3 0.25 1.01193 1.01131 6.1 × 10−4

Colliding waves 0.05 0.1 0 −0.00004 4.0 × 10−5

7. SOLITARY WAVE OVER PASSING A VERTICAL CYLINDER

As an example of the performance of the scheme in two dimensions, the numerical simu-
lation of the scattering of a solitary wave by a vertical circular cylinder has been addressed.
The same problem has been already discussed in [12, 31]. Here the same geometrical data
and initial conditions used in [31] have been chosen.

To study the diffraction and scattering of solitary waves by obstacles, it is convenient to
introduce two dynamic dimensionless parameters

Kw = H
¯
ξ0

D2
and KD = D2ξ0

H
¯

3 , (7.1)

whereξ0 is the (dimensional) amplitude of the incident solitary wave traveling on water
of uniform depthH

¯
andD is the horizontal width of the obstacle. The first parameter is a

generalization of the Keulegan–Carpenter number to the case of solitary waves and gives
information about the importance of viscous effects [31]. ForKw ¿ 1 no separation occurs
and an inviscid model is adequate. The second parameter is a measure of the relevance
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of wave diffraction by the obstacle. It may be expected that diffraction and scattering are
significant forKD ≥ 1.

Here we consider flow conditions such that the dispersive shallow water equations, which
is an ideal fluid model, can be properly used:Kw is smaller than one (so that no separation
must occur) and the incident wave is moderately high (so that nonlinearity plays a role).
The solitary wave is supposed to propagate in a channel with a rectangular cross section of
half width 19.2 and of length 70. The circular cylinder has a diameter of 4 and its axis is
located in (0, 0). The channel is large enough so that, for a certain time after the interaction
between the wave and the cylinder, the walls of the channel do not affect the flow. The
initial surface of the wave has its crest located inx = −10 with a height equal to 0.3; the
wave starts traveling in the positivex direction at the initial timet = 0.

The computational mesh is composed by 17,119 nodes; the mesh is unstructured, with a
local refinement in the region surrounding the cylinder. The side lenght of the triangles of
the mesh ranges between 0.15 and 0.5. The mesh has been tuned in such a way to ensure a
maximum side lenght of 0.5, corresponding to the minimum spatial step that was observed
to be necessary for accurate computations in 1D. The smaller triangles are located around
the cylinder. Figure 8 shows the details of the computational mesh in the region around the
cylinder.

A time step of1t = 0.25 has been used in the computation, and the simulation has
been carried out untilt = 28, corresponding to 112 time steps. The solution of the linear
system of 6N equations has been obtained iteratively by a bi-conjugate gradient algorithm
with diagonal preconditioning. The value of the parameterθ has been posed equal to 3,
corresponding to a slightly dissipative scheme.

FIG. 8. Solitary wave on a cylinder, details of the computational mesh around the cylinder.



         

564 AMBROSI AND QUARTAPELLE

FIG. 9. Solitary wave on a cylinder, elevation of the water at timet = 7.

Figures 9–12 show the elevation of the water at different times of the simulation. The
vertical scale has been magnified 100 times. Att = 7 (Fig. 9) the wave is just running
up the cylinder, reaching a maximum height of 0.47. No wave reflection is yet visible. At
t = 14 (Fig. 10) the scattering and reflection of the impinging wave are evident: the incident
wave has overpassed the cylinder, has lost its original transversal uniformity, and shows
two minima of height 0.27, located at a distance from the channel midplane equal to the
cylinder radius. At the same time a reflected wave is leaving the cylinder.

As a later time, it can be noticed that the part of the solitary wave which has a lower
height, because its propagation has been affected by the presence of the cylinder in the
channel, does not suffer from any lag with respect to the rest of the wave (Fig. 11). This
remarkable behavior has been noticed also in [31]. Moreover, the impinging solitary wave
tends to recover its initial shape as it moves farther and farther from the obstacle.

At t = 28 (Fig. 12) the pattern of the water elevation has become more complicated, but
two main structures can be observed. Several circular diffracted waves of different height
propagate away from the cylinder surface. These kinds of circular belts travel freely from
the cylinder, until they are reflected by the side walls, while behind the cylinder they interact
with the tail of the back-scattered wave.

8. CONCLUSIONS

In this paper we have introduced a new accurate and (linearly) unconditionally stable finite
element scheme of Taylor–Galerkin type for the simulation of nonlinear dispersive water
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FIG. 10. Solitary wave on a cylinder, elevation of the water at timet = 14.

waves. Due to the presence of dispersive terms, the classical Taylor–Galerkin approach had
to be revisited and modified accordingly. In fact, the presence of dispersion calls for the
introduction of auxiliary variables—the time derivative of the original unknowns—whose
space-time discretization is coupled with that of the unknowns of the original dispersive
shallow water system. Such an augmentation affects the stability properties of the numerical
scheme, making it necessary to choose suitable values for a free parameter of the discretiza-
tion to ensure stability. The linear stability analysis determines the range of this parameter
to guarantee stability and also the value to ensure zero dissipativity, in the sense of Kreiss.

The proposed approach can be used also for dispersive shallow water models different
from the classical one. If the operatorL defined in (2.8) is linear, nothing changes in the
form of the scheme as given by Eqs. (3.17)–(3.18). IfL is nonlinear, the derivation of the
scheme has to be revisited, case by case, although the underlying philosophy is expected to
be applicable effectively.

Admittedly, the Taylor–Galerkin scheme presented here is computationally rather expen-
sive. On the other hand, the scheme is unconditionally stable, zero dissipative, and second
order accurate in time. Even more remarkably, the scheme for 1D problems is characterized
by a compact stencil, which reveals a major advantage when the scheme is extended to deal
with 2D problems: the integrals occurring in the finite element method can be evaluated
very easily and the data structure is most simple.

The performance of the numerical scheme has been tested in few examples, showing
accuracy and unconditional stability in actual nonlinear calculations. The possibility of
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FIG. 11. Solitary wave on a cylinder, elevation of the water at timet = 21.

FIG. 12. Solitary wave on a cylinder, elevation of the water at timet = 28.
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using unstructured triangular meshes ensures a great flexibility to the method, which can
be used in arbitrarily complicated domains, including the modeling of small scale coastal
circulation.

APPENDIX

Let us look for a class of solutions to problem (2.4), withH = constant, which vanish
for |x| → ∞ with its first and second derivative and which are of the typeu = u(x − Ut),
whereU is a constant speed to be determined. The solutionu = (ξ, v) is governed by the
system of equations

ξt + vξx + (H + ξ)vx = 0,

vt − 1

3
H2vt xx + gξx + vvx = 0.

By introducing the dimensionless variables

ζ = ξ

H
, w = v

U
, and η = x − Ut

H
,

the solution(ζ(η), w(η)) satisfies the ordinary differential system

−ζ ′ + (wζ + w)′ = 0,

−w′ + 1

3
w′′′ + ww′ + gH

U2
ζ ′ = 0,

the prime denoting the differentiation with respect toη, under the boundary conditions
(ζ, w) → 0 as|η| → ∞.

The integration of the first equation gives immediately

ζ = w

1 − w

since the constant of integration is zero because(ζ, w)→ 0 as|η| → ∞. We assume that
w(η) < 1, ∀η.

By eliminatingζ in the second equation, we obtain the separate equation

1

3
w′′′ − w′ + ww′ + gH

U2

(
w

1 − w

)′
= 0,

which can be integrated to give

1

3
w′′ = w − 1

2
w2 − gH

U2

w

1 − w
,

the new constant of integration being zero sincew → 0 andw′′ → 0 as|η| → ∞. By mul-
tiplying this equation byw′, a further integration gives

(w′)2 = 3w2 − w3 + 6gH

U2
[w + ln(1 − w)],
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the third constant of integration being zero sincew → 0 andw′ → 0 as|η| → ∞. Requiring
now that the solutionw(η) [asζ(η)] has a maximum forη = 0, i.e.,

w′(0) = 0 and w(0) = w0,

with w0 < 1, we obtain

U2

6gH
= w0 + ln(1 − w0)

(w0 − 3)w2
0

.

Note that the right-hand side is always positive for 0< w0 < 1.
In conclusion, assumingw(η) is the even function solution to the first order ODE

(w′)2 = (3 − w)w2 − (3 − w0)w
2
0

w0 + ln(1 − w0)
[w + ln(1 − w)] (A.1)

and satisfying the initial conditionw(0) = w0, we obtain the following one-parameter family
of solutions(h = ξ + H, v) to the original system,

h(x, t) = H

1 − w
((

x − Uw0t
)/

H
) ,

v(x, t) = Uw0w
((

x − Uw0t
)/

H
)
,

where

Uw0 = ±
√

6gH
w0 + ln(1 − w0)

(w0 − 3)w2
0

. (A.2)
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