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A new numerical scheme for computing the evolution of water waves with a mod-
erate curvature of the free surface, modeled by the dispersive shallow water equations,
is described. The discretization of this system of equations is faced with two kinds
of numerical difficulties: the nonsymmetric character of the (nonlinear) advection—
propagation operator and the presence of third order mixed derivatives accounting for
the dispersion phenomenon. In this paper it is shown that the Taylor—Galerkin finite
element method can be used to discretize the problem, ensuring second order accu-
racy both in time and space and guaranteeing at the same time unconditional stability.
The properties of the scheme are investigated by performing a numerical stability
analysis of a linearized model of the scalar 1D regularized long wave equation. The
proposed scheme extends straightforwardly to the fully nonlinear 2D system, which
is solved here for the first time on arbitrary unstructured meshes. The results of the
numerical simulation of a solitary wave overpassing a vertical circular cylinder are
presented and discussed in a physical perspectiy@sss Academic Press

Key Wordsshallow water equations; nonlinear dispersive waves; Taylor—-Galerkin
method; finite elements.

1. INTRODUCTION

Since the celebrated Scott Russel’s discovery in 1834 of the existence of solitary we
a deeper and deeper mathematical understanding of the dynamics of nonlinear disp
waves has been attained (for a historical overview see [1, 2]). Restricting the attentic
systems of equations that admit two-way travelling waves, several dispersive shallow v
equations have been proposed in the literature to describe the dynamics of finite ampl
dispersive water waves (see, for instance, [3-6]).

Dispersive shallow water systems (sometimes also referred to as Boussinesq-type
tems) can be deduced by means of an asymptotic expansion technique, starting froi
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potential equation for irrotational motion and from appropriate boundary conditions
the free surface of the water. This derivation is based on two assumptions: fairly |
waves and small elevation of the free surface with respect to depth [4, 7]. If the ve
cally averaged velocity is the unknown, the dispersive shallow water system so ded
differs from the nondispersive model by the occurrence of a third order mixed deriva
term in the momentum equation. This term accounts for the dispersion, i.e., the prop
tion at different phase speeds of wave components of different wavelength and ampl
[8].

The numerical approximation of the dispersive shallow water equations can be us
for studying several physical problems and also in many engineering applications, w
moderately long waves occur. Although the dispersive shallow water equations const
an approximation of a higher order with respect to the nonlinear long-wave model, t
numerical discretization demands for due care. In fact, owing to the different mathema
nature of the equations and the peculiar physical range in which they are used, one ¢
rely upon the mere transposition of schemes which have been demonstrated to be succ
for the shallow water equations (see, for instance, [9, 10]). Roughly speaking, dispersi
expected to require that a great spatial accuracy and inertia term typically play a rele
role which calls for an appropriate account of the direction of propagation of the phys
disturbance.

While the approximation of the dispersive shallow water equations by finite differen
is currently used by several researchers [11], the approximation by finite elements is
for the most part unexplored. Among the few examples, we can mention that some au
have adopted a sort of predictor—corrector scheme [12, 13], borrowed from the finite
ference framework. The use of a Crank—Nicolson scheme for the temporal discretizal
has been exploited by Gorireg al.[14]. Katopodes and Wu have obtained excellent resul
adopting a Lax—Wendroff time discretization of the whole system of equations [15]. To
authors’ knowledge, there is no example of 2D simulation of nonlinear dispersive wave
unstructured grids.

The aim of the present paper is to investigate the application of the Taylor-Gale
(TG) method to the dispersive shallow water equations. The Taylor—Galerkin method
proposed by Donea to solve transient convection problems [16]. The attractive nume
properties of this method have been investigated in a few studies [17—-19] which demons
the high phase-speed accuracy of the method as well as its selective dissipation at high <
frequencies, ensuring almost oscillation-free solutions.

These properties, which are well known in the discretization of conservation laws v
smooth solutions, suggest the adoption of the Taylor—Galerkin method for simulating
propagation of dispersive waves, where accuracy in space and time is a very cruci
sue. In this paper a new scheme of Taylor—Galerkin type suitable for dispersive way
proposed. The presence of a dispersive operator in the equations governing this kil
flow implies a twofold modification with respect to the classical Taylor—Galerkin scher
(i) new unknowns (the time derivative of the original unknowns) have to be introduced
(ii) a parameter has to be introduced in the construction of the scheme, which prov
a kind of supplementary degree of freedom allowing the scheme to attain unconditi
stability.

A remarkable property of the present approach is that accurate results can be obt
by using a very simple basis of linear finite elements. The possibility of using the cc
pact computational molecule characteristic of the Galerkin method with linear elemen
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obtained at the price of doubling the number of unknowns, but is particularly attractive
2D computations over geometrical regions of arbitrary shape and complexity.

The content of the paper is organized as follows. In Section 2 we introduce the nonlir
system of dispersive shallow water equations both in two dimensions and in one dimen
The temporal and spatial discretizations of the one-dimensional equations accordir
the Taylor—-Galerkin methodology are described in Section 3. The resulting TG sch
was already anticipated in [20] in the context of the dispersive shallow water system.
analysis of the numerical stability of the TG scheme applied to a suitable linearized m
of the equation system is presented in Section 4. In Section 5 the method is extended tc
dimensional equations, providing also a detailed discussion of the treatment of the bour
conditions. In Section 6, three computational examples in one dimension are consid
while Section 7 contains the results of a 2D simulation of a solitary wave overpassir
circular cylinder, using an unstructured triangular mesh with linear interpolation of all 1
unknowns. The final section is devoted to some concluding remarks.

2. THE DISPERSIVE SHALLOW WATER EQUATIONS

The dispersive shallow water equations for free surface flow read [4]

h
g—t +V . (hv) =0, (2.1)
av H o HZ2 9
Fri EaV(V S (HVv)) + ?5V(V V) 4+ (v- V)V+gVE =0. (2.2)

Herev(x, y, t) is the vertically averaged fluid velocity,H (x, y) is the depth under a refer-
ence plan&; (x, v, t) is the elevation over the same reference plate, y, t) = £(x, y, t) +
H (X, y), andg is the gravity field. By using the long-wave zero order approximation

— =—-V - (Hv), % = —gV§, (2.3)
the dispersive shallow water equations can be rewritten in several forms that differ for
higher order differential terms appearing in (2.2) [7]. However, the form shown in (2.
(2.2) is the most convenient from the numerical point of view, as discussed in [21], anc
refer to it in the present work.

When considering a one-dimensional case, the system of differential equations (z
(2.2) can be formally rewritten as

0 h v h\ 9 /h 0
— 42 . — = . 2.4
ot <v_gd;;v>+fg§g>+<g v) ax (v) <gt;_H> (24)

This system can be recast in a compact vector notation either in the conservation-law

afu)

0
—(@—-"Lu S,
8t( u+ X

(2.5)
or in the quasilinear form

9 au
S L= Du+AW =s. (2.6)
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where

u=h,v)" f(u):(hv ”2+gh)T A(u):(v h)
Y T2 ’ g v/’

Ha2(Hv) H28%\' dH\"
L“_<0’2 o2 _63x2> ’ S(X)_<O’gdx> ~

2.7)

Notice thatlL is a spatial linear operator so that it commutes witht.
If the bottom is flat, i.e., iH = H = constant, the source term cancels and the opera
L simplifies to

H292p\ "
Lu= <O, ?ﬁ) . (2.8)

3. NUMERICAL SCHEME

The numerical integration of the dispersive shallow water equations requires an ar
priate, i.e., directionally biased, treatment of the propagation—advection term and, a
same time, an accurate representation of the dispersive term in the equations. To cop
these two needs, the Taylor—Galerkin method [16], developed originally for the accu
solution of transient advection problems, lends itself as the most promising candidat
fact, the fundamental aspect of the Taylor—-Galerkin method is the proper matching o
time and space discretization processes for advection equations or hyperbolic systen
discretization in time is performed before the spatial approximation by means of a Ta
series expansion in the time step, as in the classical Lax—-Wendroff FD scheme [22]
the series is extended to a higher order than the second to exploit the superior apy
mation properties of a spatial discretization by linear finite elements [17]. In this wa)
method is obtained which embodies elements of the theory of characteristics (in 1l
well as in 2D or 3D) while still retaining the compact computational molecule typic
of any Galerkin finite element approximation. Notice that the issue here is not tha
simply introducing a time discretization of a higher order, but that of obtaining a tir
discrete version of the PDE which embodies its high-order differential information at
(semi)continuous level, very similarly to the classical Obrechkoff methods for solving O
problems.

3.1. Temporal Discretization

Let us perform an expansion of the quantify** in a Taylor series ofAt around time
t =t"; up to the third order we get

(At)? (At)3
; Uit g

U™t = u" + AtuD + Ut + O((AD)Y, (3.1)

whereuy is the time derivative ofl evaluated at = t" and so on. The third order derivative
can be expressed also as

0
Ui = E(uaﬂ — ug) + O(ep), (3.2
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where

o= {At foro =1, (3.3)

1 foro #1.

By substituting the expression (3.2) into the last term of the right-hand side of equa
(3.1), we get

At At)?
u+t_ gt 6) up™ = u" + Atul + (3 - 9)(T)ut”t +0((Ah%,).  (3.4)

Foro =1, the expression (3.4) is third order accurate as (3.1) and coincides with the clas
form used as starting step for the derivation of the Taylor—Galerkin scheme [16]. For o
values of9, the expression (3.4) is only second order accurate.

Applying the linear operatofl — L) to Eq. (3.4), we get

(A )2 (At)?

(1—Lu™l—g-—"—(1— L)uttt = (1— L)u"+ At(1— L)uP + (3—6) (1—Lyub.

(3.5)
We now follow the Lax—Wendroff idea, originally pursued in a first-order hyperbolic co

text, and substitute the exact equation (2.5) and its time derivative in the Taylor se
Equation (2.5) reads

0 ou of (u)
—1l-Lu=1-L)—=—"=== 3.6
ot = ( )5t ax TS (3.6)
so that
32 d au a [ of(u) 3 af(u)
—1-Lu=—(A-L)—)=—(-——= = 7
a2 u t(( )8t> Bt( ax +S(X)) at  ax S
It is now possible to substitute the forms (3.6) and (3.7) into Eq. (3.5), thus getting
(A1)? 9 af(u™th af(u™)
1—-Lumtpo—" = =@1-Lu"—A
( ur-+6 6 3t ax ( u t

(AH)2 3 af(u™
6 Jdt 0dx

-(3-0) +Ats. (3.8)

Writing the derivative of the flux in quasilinear form, it is possible to rewrite Eqg. (3.8) a

n+1 n
(- ")“MH(? aax (Anﬂal;t ) — - - atl
(A2 3 [,
—(3-0) 5 ox (A at>+Ats (3.9)

where A" = A(u"), etc. At this stage, a difficulty, which is typical of these dispersiv
equations, is encountered: because of the presence of the ofder#iterterms with the
temporal derivatives appearing in (3.9) cannot be expressed in a straightforward manr
terms of purely spatial derivatives. To make the temporal derivatives disappear in Eqg. (
it is then necessary to introduce the new auxiliary variabldefined as

_du W)
w=r=(1-L) <W+S)’ (3.10)
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Consequently, Eq. (3.9) is equivalent to the system of equations

df(un+l)

(1—Lyw"t 4+ =s,
dx

(3.11)

n+1 (AD)® d Ny n+l n_ dfu™
(L= L™ 462 (A = (- " — At—

(At)2

—@3-0) —(A“W )+ Ats, (3.12)

in which the spatial derivative has been indicated as an ordinary derivative since the €
tions represent a time-discretized version of the original partial differential problem. -
discretization is second order accurate (third order only ferl) without requiring the use
of an intermediate step (two-level scheme). The two (vector) equations of the systen
nonlinear and are coupled together.

3.2. Spatial Discretization

We now consider the weak form of Egs. (3.11)—(3.12) provided by the standard Gale
finite element [23]. The computational domaia,[x;] is partitioned in equispaced intervals
and we define the set of the linear functidiis} to be the finite element basis with value 1 in
theith node and zero out of the surrounding elements. Then the weak form of Egs. (3.
(3.12) reads

df(un+t
<¢i ’ (1 - L)Wn+l> <wl ) (uX ) > = <1/fl ’ S>’ (313)
<'¢fi, (1_ L)un+1> 910,, (At) (An+1Wn+1) — <1//i’ (1_ L)Un> <}lf|, df(un)>
A UZ AN
+(3-6) (¥, A"W") + At(¥, 9),
(3.14)
where (-, -) indicates the usual? product. Some terms in Egs. (3.13)—(3.14) have be:

integrated by parts; this operation yields to boundary integrals, which vanish in the pre
context because of the boundary conditions (see the discussion about this issue at tt
of Section 5).

To solve Egs. (3.13)—(3.14) numerically, they have to be linearized. We can adopt
instance, the most simple linearization

An+1Wn+1 ~ Aan+1 (315)
and similarly in the implicit term involving the flux

df(un+1)

v AUl (3.16)

The resulting linearized system is

n+1 ndun+l
(Wi, (L= Lyw >+<wi,A . >=<wi,s>, (3.17)
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2
(- oty — gAY

—— (Y, AW = (Y, - L") — <w.,df(”n)>

(Aan? (¥, A"W") + At(ys, 5).
(3.18)
Projecting the solution™*! on the space of the;, we get
Um0 =D g oouTt W) =y owd (3.19)
i ]
and, asA(u) depends linearly on, we can define
1 N 1 1 vT_H-l hr_H—l
uftt = (W), A = () ) (3.20)
g v
Equations (3.17)—(3.18) can then be rewritten as
> iy A= Lyywit+ Z i, Yl ) ARUTH = (0, 9), (3.21)
i
At)?
Z(I/fu,(l— L)j)uj ujtt — ( 6) Z(l/fi’, Wl/fj)AEW?H
i k.j
= > (i, L= Lyj)uf — ALY (%, Y| ARu]
j k. j
(Ap? / NN
+ @)= DU Yl ) W] + At 9. (3.22)

k,j

These equations constitute a linear system in the unkn()Wﬁsl, u’j‘“), the dependence
of AT onuf being explicitly given in (3.20).
The terms involving the operatdr are evaluated using the usual integration by parts:

(Wi, A= L)yj) = (Wi, ¥j) — (L, )
v+ vy, L) L4 %
—(¢.7W1)+2<dX(H¢|), dX(H%)> 6< (H?y3), >
+ boundary terms (3.23)

It may be noticed that the operatiris symmetric only forH = H = constant.

Remarks on the discrete equation systefquations (3.21)—(3.22) constitute a linea
system to be solved for determining the solutigiil. The linear system comprises the
vector unknowns{W”Jrl ?*1), each with two scalar components.Nfis the number of
nodes, the order of the linear system is therefdde h general, the matrix is nonsymmetric
and block-tridiagonal, with 4 4 blocks.

Itis interesting to consider the simpler form assumed by the system (3.21)—(3.22) wh
scheme of lower time accuracy is considered or when the “dispersion opdrasoabsent.
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Foro = 0 or, equivalently, if the Taylor series (3.1) is limited to the second order ter
the final linear system to be solved can be written as

D Wi, A= Lypwit = = (g, g AU 4 (1, 9), (3.24)

i K,
> Wi A= Lypultt = (i, (1- Lyyj)hu AtZ (i, Yiyr)) AR
i j
(AD)?
2

D W Yk AW + At(yi, ). (3.25)

K]

In fact, one can solve fcm”+1 from the second equation before solving the first one ft
WT“ which can be addressed in a subsequent step. Furthermore, due to the form ¢
operatorL, each of these subsystems uncouples in two systens wfiknowns for the
two scalar components of the vectors unknowns. Therefore, in this casextidebdock-
tridiagonal system uncouples into four scalar tridiagonal systenté efuations. In the
particular case of a flat bottom, the scalar tridiagonal systems are symmetric, thanks t
symmetry of operatak .. This is the Lax—Wendroff type scheme proposed by Katopodes ¢
Wu [15].

If L = 0 (shallow water equations), Eq. (3.10) is trivial and the expressionazn be
directly substituted in Eq. (3.11). The order of the block-tridiagonal system is mowr
particular, for6 = 1 this method is nothing but the Taylor—Galerkin scheme applied tc
hyperbolic system.

4. LINEAR STABILITY ANALYSIS

To analyze the numerical stability of the scheme (3.21)—(3.22), it is useful, for the sak
simplicity, to consider the regularized long wave equation [24]. This equation is the lin
scalar counterpart of the dispersive shallow water system and describes the propagat
waves traveling in one direction only, on a flat bottom [8]:

au au  H? 9 9%
u++g —— =0. 4.1
at ( + ) Ix 3 ot ox? (4.1)

To assess the stability properties of the new TG scheme, at least in the linear regime
introduce the linearized version of Eq. (4.1), which reads

au au 9 9%u

—4+a— —-b—— =0, 4.2
at + aX at ax? (4.2)

wherea andb are positive constants. Considering linear interpolation functions on a (p
odic) uniform grid ofN equal linear elements, the discrete equations (3.21)—(3.22) car
recast in the well-known finite difference format (see, for instance, [25]), and the Tayl
Galerkin scheme (3.18)—(3.19) applied to Eq. (4.2) assumes the form

(ufd — 205+ uptd) + S5 (- ) =o

1
6( n+1 4wn+1 wTI:lL) J 5
(4.3)

(Ax)?
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1 (At
+1 41+l +1 +1 ., ntl +1 +1
o UlTa +4uf™ + ufiy) — (Ax)2 (Uftz —2uT™ + ufa) + a0 —— (wiit — wit)
1 b At
= Ui+ aul +ul,) - (Ax? (Ul —2uf +ufy) —ag = (Ul — Uy
(A'f)2
~ B0 (Wi —wiy). (4.4)

We now consider the error of the scheme, defined as the difference between the exa
the computed solution. Denoting by, €[ the round-off error fow'', uf, respectively, these
guantities can be expanded in a Fourier series as

=Y met =3 e, (4.5)
[ [

wheregp = ¢ = kr/N. As the truncation error satisfies the same equation of the discr
solution, substituting the form (4.5) into Egs. (4.3)—(4.4) and carrying out some elemen
algebra, the error components are found to satisfy the system

} _ n+1 @ n+1

[3(2+ cos¢p) + (Bx )2(1 cos¢)] +i AX sm¢e =0, (4.6)
1 n1 L R RAD7

{3(2+ Ccos¢) + (Ax)Z(l cos¢)} +i6 6AX sing n,

= }(2+ cos¢p) + —— (1 — cosop) At sing i(3—10) (A )2 sing
Rk (AX )2 €~ 15y Sinees - o
4.7)
To simplify the analysis, it is convenient to introduce the quantities
—aﬁsin and ﬂ—}(2+co )+ (1 —cosg), (4.8)
@ =ag sing 3 ¢ (A )2 ¢ '

where it can be noted th@t> 0 for any¢. Then, Egs. (4.6)—(4.7) may be rewritten as

1, la 1
Byt + 5 et =0, (4.9)
1. aAt 1 aAt
pegt o= ngtt = (p—ia)ef —13~ 9)— n. (4.10)

Substituting the former expression into the latter, we find
2
(ﬁ+9@) i+l — [5 i — (83— 9)—/3 €. (4.11)
or
et 62 —i6ap — (3—0)a?
€ 682 + 0a?

(4.12)
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The numerical stability of the scheme is controlled by the magnitude of the ampilifica
factor above and it is guaranteed provided that

et 687 — (3— 0)a?? + 36a2p2
o | 1 O]+ <1 (4.13)
€4 (68% 4 6a?)

Itis very simple to show that such a condition is verified, for any valuesawofds, provided
that

o> g (4.14)

Therefore, fom satisfying this unequality the proposed scheme is unconditionally stal
Note that the marginal vaIu@:% yields to a zero dissipative scheme. On the contrar
foro = % that is, for the standard Taylor—Galerkin coefficients of the second order ter
the scheme is always unstable. This is due to the modification of the scheme caused |
introduction of the unknowm.

Absence of numerical diffusivity is a very important feature for the discretization
nonlinear dispersive equations that typically admit as a solution waves traveling with
distortion. The permanent shape of these solutions can be assured only by the exact bal
of convection and dispersion. This property has to be accurately preserved by the num
scheme and requires avoiding introducing spurious numerical diffusion.

5. EXTENSION TO THE TWO-DIMENSIONAL SYSTEM

In this section the numerical scheme (3.18)—(3.19) derived in Section 3 is extende
the two-dimensional equations. For the sake of simplicity, we restrict our attention to
equations modeling the flow on a horizontal bottéin= H = constant. In this case the
dispersive shallow water equations read

&+ V- (hv) =0, (5.1)

HZ
Vi — ?V(V V) + (v V)v4+gVeE =0. (5.2)

Analogously to the 1D case, the momentum equation can be rewritten in a more corn
form by introducing the multidimensional spatial differential operator

H2
Lv = ?V(V - V), (5.3)
so that Eq. (5.2) simplifies to
A-Dvi+(v-V)V4+gVE =0. (5.4)

It can be noted that in two dimensions the equations cannot be written in a conserv
form similar to (2.5). We then introduce auxiliary unknowns which are the time derivati
of the basic unknowns, namely,
(=& =-V_-(hv), (5.5)
v=vi=1-D Y =(v- V)v-gVe]. (5.6)
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In analogy with the 1D case, to derive the numerical scheme a Taylor expansidn ir
up to third order has to be performed for bgthndv:

At)? At)3
";:'H—l = én + Atgtn ( ) gtt ( ) énp (5-7)

N t)2 n (At>3 n

1y Atv] + > vi + Tvm. (5.8)

We observe that the third order derivative can be rewritten as
£ = %( 4t — &) + O(ep), (5.9)
Vie = 57 (Vi = viy) + Oen), (5.10)

whereg, is defined as in (3.3). Equations (5.9)—(5.10) allow us to rewrite (5.7)—(5.8) as

At At)?
s““—e( 6) Ml " AtE + (3 9)( )Sw (5.11)
2
v (Aé) Vit = v+ AtV + 3 9)(At) Vi (5.12)

The original Egs. (5.1)—(5.4) can then be substituted into (5.11)—(5.12), yielding

(A t?

etlip V- (WY = "~ AtV - (h"V") — (3—6)

(A6t ) V- (h"", (5.13)

(A

(1 L)Vn+1+9 [(Vn+1 V)Vn+1+gvsn+l]

=1-LW —At[(v VWV +gVE" — (3— 9)(

[(V VIV +gVe:.
(5.14)

Then, using the definitions (5.5)—(5.6), the following discretization in time is obtained:

€n+1 +V. (hn+1vn+1) — 07 (515)
(1 — L™ 4 (w4 gventl = 0, (5.16)
2
§n+1 +0 (AGt) v . (§n+1vn+1 + hnt1y n+1)
2
=E"— AtV - (h"W") - (3-0) (A ) V(™" +h"M), (5.17)

(l L)Vn+1+0( ) [( n+1 V)Vn+1+ (VI'H-]. V)Vn+l+gvé.n+l]

=1-Lv" - At[(v V)V + gVE"]

— @3- 9)( [( VW (VWO + gven]. (5.18)

We linearize the equations above as

(M vty whttt =, (5.19)
(1— D" 4 (v W 4 gventt =, (5.20)
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§n+1+9( ) (é. A\va Vn+l+v VCn+1+th Vﬂ+l+’/ Vhl’H—l)
n n,,N (A )2 ny,N n..n
— " AtV - (") — (3—0) V. ™"+ h"), (5.21)
(1 L)VnJrl + 9( [( n V)Vn+1 + (V V)Vn+1 + gvé-n+l]
n ( t)2 n n
— (1= LV — At[(V" - VWV 4 gVE"] — B—0) L [(@" - V)V
LNV 4 gV (5.22)

The weak form of the equations is then obtained by means of the standard Galerkin me
integrating by parts, as usual, all the second order spatial derivatives. The finite elel
discretization of Egs. (5.19)—(5.22) is finally accomplished using linear triangular finite ¢
ments. The procedure is fully analogous to the 1D case (except for the boundary condi
that are discussed below) and is hot repeated here. The linear system to be solved in th
discrete case involvesNsunknowns,N being the number of nodes of the computatione
mesh.

Boundary conditions. At inflow and outflow, the number of boundary conditions to b
prescribed folv, &) is dictated by the characteristic theory. We have adopted

v-t=0, &£€=0 atinflow (5.23)
& =0 atoutflow (5.24)

wheret is the unit vector tangential to the boundary. At the wall, the free slip bound:
condition has to be prescribed for an inviscid fluid,

v-n=0 atthe wall (5.25)

wheren is the unit vector normal to the boundary. Moreover, boundary conditions on
auxiliary unknowns have to be prescribed. Applying the Green formula to the third or
mixed derivative term of Eqg. (5.2) one gets

(@, V(V V) = —(V - &,V -vi) + /(cb MV-vydr.  (5.26)
r

Therefore, the natural boundary conditions to be applied for the auxiliary unkoncsn
(on the portion of the boundary where the normal componenti®hot prescribed) is

V -v; =0, on allthe boundary (5.27)

6. NUMERICAL EXAMPLES IN ONE DIMENSION

For discussing and comparing the numerical results, in this section it turns out tc
useful to rewrite the equations in terms of dimensionless variables, defined by

_ u - h _ x _ g\Y?
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Using only dimensionless variables from now on, the bar can be omitted and Egs. (&
(5.2) in dimensionless form read

&+ V- (hv) =0, (6.2)
Vi — sV(V V) + (V- V)V + VE =0. (6.3)

6.1. Traveling Solitary Wave

Nonlinear dispersive systems are characterized by the fact that they admit solu
which are waves traveling without distortion, the effect of nonlinearity being balanc
exactly by that of dispersion. Exact solutions of this kind exist for the dispersive shall
water equations (6.2)—(6.3), too.

For small elevation of the water with respect to the depth, it may be seen that, negle«
higher order terms, the well-known solitary wave with a sech-profile (due to Boussin
himself) is a solution of the system (6.2)—(6.3); see [8]. The sech-profile has been used
number of authors as an approximate initial condition for the numerical approximation of
dispersive shallow water equations [4, 12, 13, 26, 27]. However, when testing a nume
scheme, it is preferable to deal with exact solutions of the differential problem, to be
to determine the exact numerical error. For this purpose, the knowledgaaofsolutions
of the dispersive shallow water equations which have a permanent shape is nhecessar
issue has been addressed in [28], where it is shown that the search for a permanent
wave solution of the dispersive shallow water equations (6.2)—(6.3) leads, for any he
of the wave, to solve an ordinary differential equation. A closed form for the propagat
speed of a solitary wave is given, allowing an exact evaluation of possible numerical pl
shifts induced by a numerical scheme. The derivation of a solution of this kind obtaine
[28] is sketched in the Appendix for completeness of the exposition. The numerical solu
of the ODE (A.1) is used in this section as the initial condition to check how accurat
the TG method computes the propagation of a solitary wave. The computational me:
intentionally rather coarse to illustrate better the performance of the scheme.

We first consider the case of a maximum elevatiga 0.2 which corresponds tp = 0.2
of the Appendix. The wave is initially centeredxn= 20 and travels up tbo= 60. The mesh
size is 0.5 and the temporal increment is 0.3.

Figure 1 shows the water elevation computed by the scheme (3.18)-(3.19) wigha\t
various instants of time. The results can be compared with those obtained by a star
Crank—Nicolson scheme (Fig. 2). The Taylor—Galerkin scheme is found be very accu
neither showing variations in the maximum elevation of the wave nor producing an errone
wake. The solution travels with the correct celerity (A.2) and does not suffer from the phs
lag error characteristic of other numerical schemes [29].

Figure 3 shows the computed solution in a test analogous to the previous one, but
& = 0.7 This elevation falls outside of the range of applicability of the dispersive shall
water equations, since it contradicts the assumptions under which they have been de
However, such a computation is useful to verify the robustness of the new numerical sch
For this computation a time stext = 0.157 has been used. By using a finer and finer mes
a perfect superposition of the computed and the exact solution is achieved.

6.2. Solitary Wave on a Beach

Here we address the simulation of a wave moving on a sloping beach, under the
conditions proposed by Peregrine [4]. The slope of the beaég; ihe initial conditions
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FIG. 1. Solitary wave propagatiog, = 0.2, Taylor-Galerkin scheme.

correspond to the ones of a solitary wave on flat bottom, centerge=&0. The initial
elevation of the wave is 0.1 and 0.2.

Atime stepAt = 0.21 has been used and a spatial meshAize- 0.33 has been assumed.
Figures 4 and 5 show the elevation profile at equally spaced intervals of time. The last sl
of Fig. 4 refers td = 25.84; the last sketch of Fig. 5 referstte- 18.6 of elapsed time. The
computation is run nearly until the ratio of elevation over depth does not overcome
assumptions of the dispersive shallow water theory.

exact
------------ computed Crank—Nicolson

1.30

elevation

[\
N AW
/ \EO

0.90 L I
0 50 100
X

FIG. 2. Solitary wave propagatio, = 0.2, Crank—Nicolson scheme.
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exact
~~~~~~~~~~~ computed Taylor-Galerkin

elevation
——

1.4

0.9

0] 50 100
X

FIG. 3. Solitary wave propagatio, = 0.7, Taylor-Galerkin scheme.

6.3. Head-on Collision of Solitary Waves

The nonlinear dispersive shallow water equations (6.2)—(6.3) allow propagation of
waves in both directions of the axis. It is then interesting to simulate numerically the
collision of two solitary waves traveling in opposite directions to check if the shape of
waves is preserved after collision. In other words, one can check numerically if the soli
waves solution of Egs. (6.2)—(6.3) are solitons. We consider here two solitary waves of e
amplitude 0.5, traveling in opposite directions. This problem is equivalent to considel
the reflection of a solitary wave from a wall and has been addressed, for instance, in [26
(the latter for a slightly different set of equations).

0.6 = —
B /L _
P —1
=]
=
a>
o.2 —
-
0.0
=20.0 40.0 S80.0

FIG. 4. Solitary wave on a beack, = 0.1.
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elevalion

FIG.5. Solitary wave on a beack; = 0.2.

A spatial incremenx = 0.1 has been used witht = 0.05. Figure 6 shows the elevation
of the water at different times before and after the collision, with a time difference of 2
The maximum value reached by water level is 1.0784, which is more than twice the inci
wave height and is slightly different from the value 1.0504 found in [26]. After the collisio
the waves continue to travel with a shape almost unchanged, but not exactly the same, &
be seenin Fig. 7. In this plot a magnification of the vertical axis makes it visible small spe
oscillations of the last profile represented in Fig. 6. This drawing shows a very small |
with maximum amplitude which is about800 of the amplitude of the incident wave. Suct
results are very close to the ones obtained in [26] by a completely different numerical
proach, then confirming that the solitary wave solutions of Egs. (6.2)—(6.3) are not solitc

Conservativity of the schemeThe integrals of some scalar quantities are conserved
Egs. (6.2)—(6.3). In the following table the global mass and velocity at initial and final tin
are compared for the computations performed in the preceding paragraphs. The tray
wave values refer to the cagg= 0.2.

glevation

FIG. 6. Collision between two solitary waves of equal amplitude 0.5.
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FIG. 7. Tail between the solitary waves after their head-on interaction.

Test At AX Initial mass Final mass % error
Travelingwave 0.15 0.5 1.04466 1.04640 6% 10°°
Travelingwave 0.3 05 1.04466 1.04381 &1n0*
Travelingwave 0.15 0.25 1.04466 1.04437 7210*
Travelingwave 0.3 0.25 1.04466 1.04477 1%x10*
Colliding waves 0.05 0.1 3.34177 3.34229 5% 10
Test At Ax Initial velocity Final velocity % error
Travelingwave 0.15 0.5 1.01193 1.00712 .74 10°3
Travelingwave 0.3 05 1.01193 1.01057 3% 1073
Travelingwave 0.15 0.25 1.01193 1.00999 9% 10°3
Travelingwave 0.3 0.25 1.01193 1.01131 .16 104
Colliding waves 0.05 0.1 0 —0.00004 40 x 10°°

7. SOLITARY WAVE OVER PASSING A VERTICAL CYLINDER

As an example of the performance of the scheme in two dimensions, the numerical s
lation of the scattering of a solitary wave by a vertical circular cylinder has been addres
The same problem has been already discussed in [12, 31]. Here the same geometrics
and initial conditions used in [31] have been chosen.

To study the diffraction and scattering of solitary waves by obstacles, it is convenier
introduce two dynamic dimensionless parameters

_ H&

K D2
v~ p2

and Kp = aTER (7.1)
whereg, is the (dimensional) amplitude of the incident solitary wave traveling on wat
of uniform depthH and D is the horizontal width of the obstacle. The first parameter is
generalization of the Keulegan—Carpenter number to the case of solitary waves and
information about the importance of viscous effects [31]. KQr« 1 no separation occurs
and an inviscid model is adequate. The second parameter is a measure of the rele
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of wave diffraction by the obstacle. It may be expected that diffraction and scattering
significant forKp > 1.

Here we consider flow conditions such that the dispersive shallow water equations, w
is an ideal fluid model, can be properly us&q; is smaller than one (so that no separatiol
must occur) and the incident wave is moderately high (so that nonlinearity plays a rc
The solitary wave is supposed to propagate in a channel with a rectangular cross sect
half width 19.2 and of length 70. The circular cylinder has a diameter of 4 and its axi
located in (0, 0). The channel is large enough so that, for a certain time after the intera
between the wave and the cylinder, the walls of the channel do not affect the flow.
initial surface of the wave has its crest locatecia= —10 with a height equal to 0.3; the
wave starts traveling in the positivedirection at the initial time& = 0.

The computational mesh is composed by 17,119 nodes; the mesh is unstructured, \
local refinement in the region surrounding the cylinder. The side lenght of the triangle
the mesh ranges between 0.15 and 0.5. The mesh has been tuned in such a way to el
maximum side lenght of 0.5, corresponding to the minimum spatial step that was obse
to be necessary for accurate computations in 1D. The smaller triangles are located a
the cylinder. Figure 8 shows the details of the computational mesh in the region aroun
cylinder.

A time step of At =0.25 has been used in the computation, and the simulation t
been carried out until =28, corresponding to 112 time steps. The solution of the line
system of & equations has been obtained iteratively by a bi-conjugate gradient algori
with diagonal preconditioning. The value of the paramétéras been posed equal to 3
corresponding to a slightly dissipative scheme.
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FIG. 9. Solitary wave on a cylinder, elevation of the water at time7.

Figures 9—12 show the elevation of the water at different times of the simulation.
vertical scale has been magnified 100 timest At7 (Fig. 9) the wave is just running
up the cylinder, reaching a maximum height of 0.47. No wave reflection is yet visible.
t = 14 (Fig. 10) the scattering and reflection of the impinging wave are evident: the incic
wave has overpassed the cylinder, has lost its original transversal uniformity, and st
two minima of height 0.27, located at a distance from the channel midplane equal tc
cylinder radius. At the same time a reflected wave is leaving the cylinder.

As a later time, it can be noticed that the part of the solitary wave which has a lo
height, because its propagation has been affected by the presence of the cylinder |
channel, does not suffer from any lag with respect to the rest of the wave (Fig. 11).
remarkable behavior has been noticed also in [31]. Moreover, the impinging solitary w
tends to recover its initial shape as it moves farther and farther from the obstacle.

At t =28 (Fig. 12) the pattern of the water elevation has become more complicated,
two main structures can be observed. Several circular diffracted waves of different he
propagate away from the cylinder surface. These kinds of circular belts travel freely fi
the cylinder, until they are reflected by the side walls, while behind the cylinder they intel
with the tail of the back-scattered wave.

8. CONCLUSIONS

Inthis paper we have introduced a new accurate and (linearly) unconditionally stable f
element scheme of Taylor—Galerkin type for the simulation of nonlinear dispersive wi
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FIG. 10. Solitary wave on a cylinder, elevation of the water at tirae14.

waves. Due to the presence of dispersive terms, the classical Taylor—Galerkin approac
to be revisited and modified accordingly. In fact, the presence of dispersion calls for
introduction of auxiliary variables—the time derivative of the original unknowns—who
space-time discretization is coupled with that of the unknowns of the original disper:
shallow water system. Such an augmentation affects the stability properties of the nume
scheme, making it necessary to choose suitable values for a free parameter of the disci
tion to ensure stability. The linear stability analysis determines the range of this paran
to guarantee stability and also the value to ensure zero dissipativity, in the sense of Ki

The proposed approach can be used also for dispersive shallow water models diff
from the classical one. If the operatbrdefined in (2.8) is linear, nothing changes in the
form of the scheme as given by Egs. (3.17)—(3.18). 1§ nonlinear, the derivation of the
scheme has to be revisited, case by case, although the underlying philosophy is expec
be applicable effectively.

Admittedly, the Taylor—Galerkin scheme presented here is computationally rather ex|
sive. On the other hand, the scheme is unconditionally stable, zero dissipative, and se
order accurate in time. Even more remarkably, the scheme for 1D problems is characte
by a compact stencil, which reveals a major advantage when the scheme is extended t
with 2D problems: the integrals occurring in the finite element method can be evalu:
very easily and the data structure is most simple.

The performance of the numerical scheme has been tested in few examples, shc
accuracy and unconditional stability in actual nonlinear calculations. The possibility
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FIG. 11. Solitary wave on a cylinder, elevation of the water at time 21.
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FIG. 12. Solitary wave on a cylinder, elevation of the water at time 28.
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using unstructured triangular meshes ensures a great flexibility to the method, whick
be used in arbitrarily complicated domains, including the modeling of small scale coa
circulation.

APPENDIX

Let us look for a class of solutions to problem (2.4), with= constant, which vanish
for |x] — oo with its first and second derivative and which are of the type u(x — Ut),
whereU is a constant speed to be determined. The solutien(&, v) is governed by the
system of equations

gt"i‘vé:x_’_(H +€)Ux :0,

1
v — §H2Utxx + g« + vvg = 0.

By introducing the dimensionless variables

& v x — Ut
== =—, and n =
¢ v Tk n q

the solution(¢ (n), w(n)) satisfies the ordinary differential system

=+ W +w) =0,
1 H
_w/ + éw/// + ww/ + ?J_zé./ — 0,
the prime denoting the differentiation with respectitounder the boundary conditions
(¢, w) — 0as|n| — oo.
The integration of the first equation gives immediately

since the constant of integration is zero becaygse) — 0 as|n| — co. We assume that
w(n) <1,Vn.
By eliminating¢ in the second equation, we obtain the separate equation

1 " li / gH w '
gV T tww +m(m) =0

which can be integrated to give

the new constant of integration being zero since> 0 andw” — 0 as|n| — co. By mul-
tiplying this equation byw’, a further integration gives
6gH

w2 =3w? —wd+ W[w +In(1—w)],
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the third constant of integration being zero simce> 0 andw’ — 0 as|n| — oco. Requiring
now that the solutiom (n) [as¢ (n)] has a maximum fop = 0, i.e.,

w'(0) =0 and w(0) = wo,
with wg < 1, we obtain

U?  wo+In(l— wp)
6gH (w0—3)w§

Note that the right-hand side is always positive for @ < 1.
In conclusion, assuming(n) is the even function solution to the first order ODE

(3 — wo)wj

N2 _ _ 2 _
W)"=B-ww wo + IN(1 — wo)

[w+In(1 — w)] (A.1)

and satisfying the initial conditiom (0) = wg, we obtain the following one-parameter family
of solutions(h = & + H, v) to the original system,

H
1—w((x = Uyt)/H)
v(X,t) = Uwow((x - U“’Ot)/H)’

h(x,t) =

where

wo + IN(1 — wp)
Uy, = £4/6gH—————. A2
0 Vg (w0 — Byul (A.2)
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